
Elastic RSS
Co-Scheduling Packets and Cores Using Programmable NICs

Alexander Rucker
Tushar Swamy, Muhammad Shahbaz, and Kunle Olukotun
Stanford University

August 17, 2019



How do wemeet

tail latency
constraints?

1



Existing systems have several limitations.

RandomHashing
• Load imbalance

• Over provisioned

NIC

Centralized Scheduling
• Dedicated core

• Limited throughput

NIC

Sched

2



Existing systems have several limitations.

RandomHashing
• Load imbalance

• Over provisioned

NIC

Centralized Scheduling
• Dedicated core

• Limited throughput

NIC

Sched

2



How do we

scalably & CPU-efficiently
meet tail latency constraints?

3



eRSS uses all cores for useful work and runs at line rate.

eRSS

4



Design



eRSS’s packet processingmaps to a PISA NIC with map-reduce extensions.

P
a
r
s
e
r

Match-Action Pipeline Map-Reduce
Block

Match-Action Pipeline

D
e
p
a
r
s
e
r

Programmable NIC On-chip Core
(ARM or PowerPC)

PHV
H
o
s
t

C
P
U
s

5



1. Assign each packet to an application.

P
a
r
s
e
r

Match-Action Pipeline Map-Reduce
Block

Match-Action Pipeline

D
e
p
a
r
s
e
r

Programmable NIC On-chip Core
(ARM or PowerPC)

PHV
H
o
s
t

C
P
U
s

• For example, use IP address or port number.

6



2. Estimate the per-packet workload.

P
a
r
s
e
r

Match-Action Pipeline Map-Reduce
Block

Match-Action Pipeline

D
e
p
a
r
s
e
r

Programmable NIC On-chip Core
(ARM or PowerPC)

PHV
H
o
s
t

C
P
U
s

Workload
Estimation

per 
Application

• Can use any set of packet header fields (currently, only packet size).

• Model is periodically trained by the CPU.

7



3. Determine core count for the application.

P
a
r
s
e
r

Match-Action Pipeline Map-Reduce
Block

Match-Action Pipeline

D
e
p
a
r
s
e
r

Programmable NIC On-chip Core
(ARM or PowerPC)

PHV
H
o
s
t

C
P
U
s

Workload
Estimation

per 
Application

Core
Allocation

per 
Application

• Compare allocated cores to exponential moving average of workload.

• Use heuristics and hysteresis to avoid ringing.

8



4. Select a virtual core.

P
a
r
s
e
r

Match-Action Pipeline Map-Reduce
Block

Match-Action Pipeline

D
e
p
a
r
s
e
r

Programmable NIC On-chip Core
(ARM or PowerPC)

PHV
H
o
s
t

C
P
U
s

Workload
Estimation

per 
Application

Core
Allocation

per 
Application

Consistent
Hashing

with Weights

per 
Application’s
Virtual Core

• Virtual cores within each application are allocated densely, starting at 0.

• Packets are hashed & the best allocated core is chosen.

9



5. Estimate queue depths.

P
a
r
s
e
r

Match-Action Pipeline Map-Reduce
Block

Match-Action Pipeline

D
e
p
a
r
s
e
r

Programmable NIC On-chip Core
(ARM or PowerPC)

PHV
H
o
s
t

C
P
U
s

Workload
Estimation

per 
Application

Core
Allocation

per 
Application

Consistent
Hashing

with Weights

per 
Application’s
Virtual Core

Queue-Depth
Estimation

per 
Application’s
Virtual Core

Update weights
(in 10µs)

• Queues are estimated per-virtual core.

• Estimates are used to adjust consistent hashing weights.

10



6. Map the virtual core to a physical core.

P
a
r
s
e
r

Match-Action Pipeline Map-Reduce
Block

Match-Action Pipeline

D
e
p
a
r
s
e
r

Programmable NIC On-chip Core
(ARM or PowerPC)

PHV
H
o
s
t

C
P
U
s

Workload
Estimation

per 
Application

Core
Allocation

per 
Application

Consistent
Hashing

with Weights

per 
Application’s
Virtual Core

Queue-Depth
Estimation

per 
Application’s
Virtual Core

Update weights
(in 10µs)

V2P Core 
Mapping

per
Application

• CPU assigns each physical core to an application as an active/slack core.

• Look up ⟨Application, Virtual Core⟩ → Physical Core in match-action table.

11



1. An application needs additional headroom.

Run: Batch

Run: Batch
Sleep: Server

Run: Server

Linux Sched. Tick

Poll NIC

SW Alloc. Core

NIC InterruptNIC Dealloc.

App1
Host CPUs

eRSS

Manager

L

12



2. The core is initially running a batch job.

Run: Batch

Run: Batch
Sleep: Server

Run: Server

Linux Sched. Tick

Poll NIC

SW Alloc. Core

NIC InterruptNIC Dealloc.

App1
Host CPUs

eRSS

Manager

L

13



3. The softwaremanager starts and pins a sleeping thread to the core.

Run: Batch

Run: Batch
Sleep: Server

Run: Server

Linux Sched. Tick

Poll NIC

SW Alloc. Core

NIC InterruptNIC Dealloc.

App1
Host CPUs

eRSS

Manager

14



4. When the NIC allocates a core, it wakes up the resident thread.

Run: Batch

Run: Batch
Sleep: Server

Run: Server

Linux Sched. Tick

Poll NIC

SW Alloc. Core

NIC InterruptNIC Dealloc.

App1
Host CPUs

eRSS

Interrupt

Manager

15



5. Cores can run any server software, incl. distributed work stealing or preemption.

Run: Batch

Run: Batch
Sleep: Server

Run: Server

Linux Sched. Tick

Poll NIC

SW Alloc. Core

NIC InterruptNIC Dealloc.

App1
Host CPUs

eRSS

Manager

16



6. Upon deallocation, the packet thread sleeps and the OS schedules a batch job.

Run: Batch

Run: Batch
Sleep: Server

Run: Server

Linux Sched. Tick

Poll NIC

SW Alloc. Core

NIC InterruptNIC Dealloc.

App1
Host CPUs

eRSS

Manager

17



Preliminary Evaluation



We simulate eRSS’s performance on a synthetic model.

• Packets have Poisson-distributed inter-arrival times.

• Packet sizes are representative of Internet traffic.

• Packet processing time correlates with size and added noise.

18



eRSS responds quickly to load variations.

0

10

20

30

40

0

16

32

48

64

0 1 2 3 4 5

Re
q.

Tr
aff

ic
(G
bp

s) RSS
Co

re
sA

llo
ca
te
d

Time (ms)
19



eRSS responds quickly to load variations.

0

10

20

30

40

0

16

32

48

64

0 1 2 3 4 5

Re
q.

Tr
aff

ic
(G
bp

s) RSS
eRSS-a (90% load)

Co
re
sA

llo
ca
te
d

Time (ms)
19



eRSS responds quickly to load variations.

0

10

20

30

40

0

16

32

48

64

0 1 2 3 4 5

Re
q.

Tr
aff

ic
(G
bp

s) RSS
eRSS-a (90% load)
eRSS-c (75% load)

Co
re
sA

llo
ca
te
d

Time (ms)
19



eRSS deallocates slowly to ensure queues are drained.

0

10

20

30

40

0

16

32

48

64

0 1 2 3 4 5

Re
q.

Tr
aff

ic
(G
bp

s) RSS
eRSS-a (90% load)
eRSS-c (75% load)

Co
re
sA

llo
ca
te
d

Time (ms)

L

20



eRSS adds controllable tail latency.

0

1

0.2

0.4

0.6

0.8

0.1 1 10 100

CD
F

Latency (µs)

RSS
eRSS-a (90% load)
eRSS-c (75% load)

L
SLO

21



Future Work & Summary



eRSS will be extended with ML.

• Workload estimation
• Efficient core scheduling requires accurate workload estimates.
• Use packet header fields and deep packet inspection to gather statistics.

• Core scheduling with Reinforcement Learning (RL)
• Replace heuristics for adding/removing cores to an application.
• Replace consistent hashing for distributing packets between cores.

22



eRSS will be extended with ML.

• Workload estimation
• Efficient core scheduling requires accurate workload estimates.
• Use packet header fields and deep packet inspection to gather statistics.

• Core scheduling with Reinforcement Learning (RL)
• Replace heuristics for adding/removing cores to an application.
• Replace consistent hashing for distributing packets between cores.

22



eRSSmeets tail latency constraints while saving cores.

• Parameters control trade-off between core use and tail latency.

• eRSS runs at line rate using slight extensions to existing NICs.

• eRSS is compatiblewith a variety of software solutions.

• eRSS can be extended withML for automatic operation.

23



eRSS
scalably & CPU-efficiently

meets tail latency constraints.

Questions?

24



eRSS adds a controllable amount of additional queue depth.

0

10

20

30

40

0

10

20

30

0 1 2 3 4 5

Re
q.

Tr
aff

ic
(G
bp

s) RSS
eRSS-a (90% load)
eRSS-c (75% load)

De
ep

es
tQ

ue
ue

(k
iB
)

Time (ms)



eRSSminimizes breaking flows.

0.7

0.8

0.9

1.0

0 2 4 6 8 10

CD
F

Break Counts

eRSS-a (90% load)
eRSS-c (75% load)


	Design
	Preliminary Evaluation
	Future Work & Summary
	Appendix

