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Existing systems have several limitations.

RandomHashing
• Load imbalance

• Over provisioned

NIC

Centralized Scheduling
• Dedicated core

• Limited throughput

NIC

Sched

2



Existing systems have several limitations.

RandomHashing
• Load imbalance

• Over provisioned

NIC

Centralized Scheduling
• Dedicated core

• Limited throughput

NIC

Sched

2



How do we

scalably & CPU-efficiently
meet tail latency constraints?
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eRSS uses all cores for useful work and runs at line rate.

eRSS
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Design



eRSS’s packet processingmaps to a PISA NIC with map-reduce extensions.
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1. Assign each packet to an application.
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• For example, use IP address or port number.
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2. Estimate the per-packet workload.
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• Can use any set of packet header fields (currently, only packet size).

• Model is periodically trained by the CPU.
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3. Determine core count for the application.
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• Compare allocated cores to exponential moving average of workload.

• Use heuristics and hysteresis to avoid ringing.
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4. Select a virtual core.
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• Virtual cores within each application are allocated densely, starting at 0.

• Packets are hashed & the best allocated core is chosen.
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5. Estimate queue depths.
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• Queues are estimated per-virtual core.

• Estimates are used to adjust consistent hashing weights.
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6. Map the virtual core to a physical core.
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• CPU assigns each physical core to an application as an active/slack core.

• Look up ⟨Application, Virtual Core⟩ → Physical Core in match-action table.
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1. An application needs additional headroom.
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2. The core is initially running a batch job.
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3. The softwaremanager starts and pins a sleeping thread to the core.
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4. When the NIC allocates a core, it wakes up the resident thread.
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5. Cores can run any server software, incl. distributed work stealing or preemption.
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6. Upon deallocation, the packet thread sleeps and the OS schedules a batch job.
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Preliminary Evaluation



We simulate eRSS’s performance on a synthetic model.

• Packets have Poisson-distributed inter-arrival times.

• Packet sizes are representative of Internet traffic.

• Packet processing time correlates with size and added noise.
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eRSS responds quickly to load variations.
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eRSS deallocates slowly to ensure queues are drained.
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eRSS adds controllable tail latency.
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Future Work & Summary



eRSS will be extended with ML.

• Workload estimation
• Efficient core scheduling requires accurate workload estimates.
• Use packet header fields and deep packet inspection to gather statistics.

• Core scheduling with Reinforcement Learning (RL)
• Replace heuristics for adding/removing cores to an application.
• Replace consistent hashing for distributing packets between cores.

22



eRSS will be extended with ML.

• Workload estimation
• Efficient core scheduling requires accurate workload estimates.
• Use packet header fields and deep packet inspection to gather statistics.

• Core scheduling with Reinforcement Learning (RL)
• Replace heuristics for adding/removing cores to an application.
• Replace consistent hashing for distributing packets between cores.

22



eRSSmeets tail latency constraints while saving cores.

• Parameters control trade-off between core use and tail latency.

• eRSS runs at line rate using slight extensions to existing NICs.

• eRSS is compatiblewith a variety of software solutions.

• eRSS can be extended withML for automatic operation.
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eRSS
scalably & CPU-efficiently

meets tail latency constraints.

Questions?
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eRSS adds a controllable amount of additional queue depth.
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eRSSminimizes breaking flows.
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