Taurus: An Intelligent Data Plane

Problem Statement Approaches to managing datacenter networks are either: Slow but intelligent Fast yet dumb (e.g., anomaly detection) (e.g., ECMP) Intelligence (Controller) Data Plane (Switch or NIC) Data Plane (Switch or NIC) Can we get *fast and intelligent* approaches by moving the intelligence into the data plane? Packet Data Plane Packet Intelligence (Switch or NIC) Out In Data Plane Expressiveness • Popular networking DSLs like P4 already Data In comprise of multiple programming abstractions. • However, none of these are suitable for machine learning tasks. • We propose adding a new abstraction for machine intelligence: Map-Reduce.

Abstraction	Implementation		Par
Parsing	FSMs:		
Match-Action	RMT+VLIW:		• The
Scheduling	PIFO:		• We
Map-Reduce (Intelligence)	Parallel Patterns		- arci • Tau _ 12

Tushar Swamy, Alexander Rucker, Muhammad Shahbaz, Neeraja Yadwadkar, Yaqi Zhang, and Kunle Olukotun

Design of Taurus

We design our hardware around the **Map-Reduce** pattern to support machine intelligence and exploit inherent parallelism for high throughput and low latency execution of learned algorithms.

Architecture

- A Map-Reduce compute unit consists of:
- 1. Pipelined SIMD lanes of functional units (FU) and pipeline registers (PR).
- 2. A reduction network ...

Compute Units (**CU**) are interspersed with scratchpad memory units (MU) to exploit data locality.

Taurus Pipeline

- e Map-Reduce engine is embedded between tch-action tables in the ingress pipeline.
- prototype Taurus using the **Plasticine** chitecture and **Spatial** HDL.

urus's peak throughput ranges from 512 Gbps 12 Tbps depending on packet and model sizes.

Taurus in the Datacenter

Datacenter operators can run Taurus both inside the network switches as well as at the end-host NICs.

—— Taurus in Switches ——

- network.
- Enables intelligent applications like anomaly detection, routing, and load **balancing** using learned functions that operate at line rate.

—— Taurus in Hosts' NICs -

- (Indigo) and RSS (Shenango).

• High throughput allows switches to apply learned functions to every packet in the

• Taurus can implement end-host functions for applications like **congestion control**

Learned algorithms with feedback allows for smarter core and packet scheduling.

Evaluation

Microbenchmarks

Latency across different microbenchmarks:

Unrolling factors required to hit 1 GPkt/s:

App. Benchmarks

Overheads are calculated relative to a 300 mm² chip with 4 pipelines each drawing an estimated 25 W.

Anomaly Detection:

The models are fully unrolled to meet typical switch line rates (512 Gbps – 12 Tbps).

		Area		Р
Model	Lat (ns)	mm^2	+%	mW
SVM	68	4.59	6.1	263
DNN	362	8.80	11.7	506

Indigo Congestion Control \bullet

The model is unrolled to meet typical NIC line rates (40 Gbps – 96 Gbps).

		Area		P
Model	Lat (ns)	mm^2	+%	mW
LSTM	380	17.73	23.6	1018

CPU Cores

